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Abstract — Physical optics scattering calculations
performed on the NASA Deep Space Network (DSN)
34-meter beam-waveguide  antennas at Ka-band requires
approximately 12 hours CPU time on a Cray Y-MP2
computer — excessive in terms of resource utilization.
The calculations are done two mirrors at a time. The
sampling theorem is used to reduce the number of points
on the second surface obtained by performing a physical
optics integration over the first surface. The number of
points required by subsequent physical optics integrations
is obtained by interpolation. Time improvements on the
order of 2 to 4 were obtained for typical scattering pairs.

I. INTRODUCTION

The technique discussed here was developed to reduce the
time required by physical optics in the computing of the
antenna patterns of the 34-m beam-waveguide  antennas at the
NASA/Jet Propulsion Laboratory’s Deep Space Network
(DSN). Figure 1 illustrates a typical DSN beam-waveguide
(BWG) antenna. With n mirrors, the pairwise analysis must
be repeated n-1 times before the final far fields are
evaluated, For analysis up to X-band, the available
computers could easily handle calculations of such size and
complexity. However, with the shift to Ka-band to support
future deep space missions, computational times are
increased by a faclor  of about 16.

This paper presents a method to reduce the overall time
by a factor of 4 or more for a typical pair of scattering
surfaces and by a factor of 2 for the overall antenna system.
The sampling theorem coupled with a near-field radial
interpolation is used to speed up the physical optics
calculations.

The sampling theorem has%cen previously used for the
far-field analysis of reflecting surfaces [1], and a sampling-
like technique [2] that allows the use of the FFT (Fast
Fourier Transform) algorithm has been used both for the far
field  of a parabolic reflector and for the Fresnel  zone fields
of a planar aperture. Both methods [1] and [2] were
extended to the near field [3], [4], but were limited to
evaluating the fields on a spherical surface of constant
radius.

*Manuscript received November 1, 1993. The work described in this paper
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Fig. 1. 34-m BWG antenna.

Evaluating a BWG system requires multiple near-field
calculations on arbitrary surfaces. To overcome the existing
limitations, the sampling technique has been generalized for
arbitrary field point calculations in the near field. Also,
since evaluations on multiple surfaces are required, a
technique is outlined for developing an equivalent source
aperture that defines the geometry required to calculate the
optimum sampling parameters.

11. METHOD

The basic method used to analyze the 34-m antennas
consisted of performing a physical optics integration over the
currents on the various surfaces of the antenna. The form
of the physical optics program used here [5] is based upon
a discrete approximation of the radiation integral. In this
approach, the reflector surface is replaced by a triangular
facet representation such that. the surface resembles a
geodesic dome. The physical optics currents are assumed to
be constant in amplitude and phase over each of the facets so
the radiation integral is reduced to a simple summation.

To evaluate the complete antenna, an integration is
performed over the currents on the first scattering surface to
get the currents on the second surface. Using these new
currents on the second surface, the process is repeated,
continuing utilization of pairs of surfaces until the complete
antenna has been analyzed. The final integration over the
main reflector uses the Jacobi-Bessel form of physical optics,
which is much faster for calculating far tleld  patterns from
large reflectors, but unfortunately not amenable to the use of
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the sampling theorem. With the exception of the main
reflector, each surface is of comparable size, and if the
current resolution in any direction is N, then N* physical
optics integrations on the first surface are required for each
of the W current points on the second scattering surface.
This implies N4 operations and is the real driver for the
computational time.

If the number of points evaluated on the second surface
can be reduced significantly and replaced by interpolation to
obtain the necessary N* points required by a subsequent
physical optics calculation, then the computational time will
approach that of W operations on the first surface. The
physical optics integral is composed of two basic parts, the
current term and the kernel or exponential term. The
current term is typically a slowly varying function of
position, while the kernel varies rapidly as a function of
position and observation point. The approach is to employ
the sampling theorem to determine the number of surface
points necessary to define the surface currents on the second
surface, and then to use an interpolation algorithm to obtain
the number of points required by the rapidly varying, but
easily evaluated kernel.

A key problem is to define a field sampling function that
could be used lo determine the sampling frequency. Patterns
produced by a uniform distribution should have the highest
frequency content and should provide a conservative
estimator for the maximum sampling frequency. The pattern
distribution from a uniform square source distribution is:

E(u) = Sin(u)/(u).

where: u = 27rX. sin Olk

Xm = center to edge dimension of the
source aperture

e = angle to a field point on the
sampling surface

A = wavelength

If this distribution is evaluated on the sampling surface, then
the distance from the surface center to its edge in u, v space
is:

Um = 27rZ~, Sin O.lk

w h e r e :  tl~ = angle to the edge of the sampling
surface.

Since the sampling theorem requires sampling at twice the
highest frequency, letting

B =  um/27r

be the sampling frequency, over the full width the number
of samples would be:

The Sin(u)/(u) function is based on a far-field derivation.
Although it does not provide a rigorous basis for estimating
the sampling frequency for sampling surfaces in the near
field, it still gives a good estimate for typical source aperture
fields. Also, the fields on the sampling surface are not a
strictly band-limited function. To account for these
limitations, an 18 percent oversampling was used, and (as
will be shown later) provides sufficient accuracy.

Since the Sin(u)/(u) field function is defined on a spherical
surface, the sampling must also be done on a spherical
surface. In addition, the origin of the spherical surface must
be at the field function phase center so as to minimize the
phase variations over the spherical surface. In addition, the
origin must also be at the center of the source aperture. In
general there are three problems: First, the reflector
surfaces usually are not spherical. Second, the center of the
source aperture may not be the phase center of the scattered
fields. And third, even if the reflector surface was
spherical, the scattered field phase center may not be located
at the origin of the spherical reflector. To accommodate
non-spherical surfaces or offset phase centers, the surface of
interest is enclosed by two spherical surfaces, with the
origins of the two surfaces at the phase center of the
scattered fields. Figure 2 illustrates the geomet~.  In the
figure are five surfaces: in addition to the sub reflector
(source aperture) and the main reflector (ultimate sampling
surface), there are the two surfaces enclosing the main
reflector, and an equivalent aperture. If the phase center
dots not coincide with the center of the source aperture, an
equivalent source aperture is constructed at the phase center.

To determine where the phase center should lie, a subset
of points are calculated on a spherical surface constructed
midway between the two spherical reflectors described
above. A phase center location is computed from these
points that minimizes the phase pattern variation, in a least
squares sense, over the spherical surface, the origin of which
coincides with the compute phase center location. A
discussion of this technique is beyond the scope of this
article; however W. Rusch  and P. Potter [6] describe a two-
dimensional technique which is the basis of the three-
dimensional technique used here. The objective is to
minimize
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where:
Wi =

k =
d =

‘)’i =
c =

phase weight
propagation constant
computed vector determining offset to
phase center location
direction to field phase point
residual phase of pattern relative to
phase center
phase pattern on spherical surface
relative to origin

mean of kd COS vi -F C - @i

The phase center algorithm used is based on far-field
approximations, i.e., the distance to the phase center location
is small compared to the size and distance to the surface on
which the phase is evaluated. This limitation is overcome by
iterating the rdgorithm  until the last estimate of the
correction to the phase center position is smaller than some
specified value.

The equivalent aperture size is estimated to produce a
field distribution similar to that on the main reflector.
Referring to Figure 2, the equivalent aperture size is:

x.-=

where:
Sf =
Xm =

xc =

em =

(3, =

S~ X. Sin 9@in tl~

oversarnpling  parameter
center to edge dimension of equivalent
aperture
center to edge dimension of source
aperture (subreflector)
angle to edge of sampling surface for
equivalent aperture
angle to edge of sampling surface for
source aperture (orthogonal size)

Since a square aperture is used, Y~ = X~. This size is used
in the calculation of the number of sample points N. A
radius from the center of the equivalent source aperture
(phase center) is constructed to the interpolation point on the
surface of interest and made to intercept the two spherical
surfaces. Interpolated fiel& are computed on the two
spherical surfaces at the intersection points of the radius.
The polar interpolation on the two spherical surfaces is
expressed as follows:

where: u = 27r x X./(Xr); v = 27r y Y./(Xr)

Thus the two field points H, and H2 are calculated at r, and
rz respectively on the two surfaces. Next, a radial
interpolation is performed between these two points to obtain
the interpolated field point on the surface of interest. Since

a near-field interpolation is required, terms of the order 1/r
and 1/# are used. The appropriate equations are as follows:

H=~ (A. + +)

where:

47r- — (r~H, e “k” - r~H2 e ‘)”])
‘ 0  -  (r, -r2)

47rr1r2
A,=—.———— (r, H, e “k’I  - r2H2 e “k”)

(r,-r,)

This process is repeated until all the currents that are
required for subsequent physical optics calculations have
been calculated.

III. RESULTS

Figures 3 and 4 show the accuracy of the sampling
approach. Figure 3 shows the fields calculated on the
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Fig. 3. H, field on surface of second parabola.
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sampling surface, one curve where all the points are
calculated in the normal manner and a second curve for the
case where interpolation is done with a sparse set of sample
points. There is a small amount of ripple, less than 0.5 dB,
but as seen in the Figure 4, it has a negligible effect on
performance. The curves shown in Figure 4 are for the far
fields calculated by performing a physical optics integration
over the currents on the second parabola (sampling surface).
One curve uses currents calculated using the sampling
theorem and the other curve is based on the currents being
computed using physical optics integration for all current
points. As can be seen, the two curves are essentially
identical over 40 dB. The differences are primarily in the
sidelobe region, However, the sidelobe regions do not
illuminate subsequent scattering surfaces and therefore are of
no interest in this particular application.

An investigation was made to determine the effect of the
size of the oversampling parameter on the accuracy of the
computation of the scattered patterns. Figure 5 illustrates
the effect of the oversampling  parameter for a combination
of an ellipse and a parabola. The upper 28 dB of the pattern
was truncated to give more resolution to the area most
affected by the oversampling parameter. As can be seen, a
value of 1.18 is sufficient for a dynamic range of 37 dB.
Except for the error at the 37-dB relative level, a value of
1.6 followed the main lobe down to at least the 58-dB
relative level. As can be seen, larger oversampling values
did not help in the side-lobe region. It is recommended that
convergence tests be run for each general application,
especially if a smaller value of the oversampling parameter
is desired. The effect of increasing the sampling surface
beyond the limits of the actual surface by as much as
20 percent was investigated and was found to have very little
effect and was not pursued further.

Table 1 is a summary of the time improvement for a
calculation on a 34-m beam-waveguide  antenna at Ka-band,
The results are shown by mirror pairs, the first mirror being
the source mirror and the second mirror being the sampling
mirror, The difference in time between the first two cases
is easily accounted for. The sampling frequency is based on
the size of the source aperture and the subtended angle
produced by the sampling surface, In the second case the
two mirrors are closer together, increasing the subtended
angle and in turn requiring a higher sampling frequency.
The overall improvement up to and including the
subreflector is a factor of 2,73, The sampling theorem was
not applied to the main reflector calculation, so an
improvement factor of 1.0 was assigned. Including the main
reflector, a net improvement of 2.05 was obtained, reducing
computation time from 11,55 hours to 5.64 hours.

Table 1. 34-n~ BWG antenna analysis summary at
Ka-band.
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